1. Meta-analyses/Reviews

A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation.
Pietursson BE, Tan WC, Zwahlen M, Lang NP

Which Hard Tissue Augmentation Techniques Are the Most Successful in Furnishing Bony Support for Implant Placement?
Aghaloo TL, Moy PK

Bone Augmentation Techniques.
Mc Allister B, Haghhighat K
J Periodontol 2007, 78, 377-396

Systematic review of survival rates for implants placed in the grafted maxillary sinus
Del Fabbro M, Testori T, Francetti L, Weinstein R

Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review
Wallace SS, Froum SJ

Efficacy of Porous Bovine Bone Mineral in Various Types of Osseous Deficiencies: Clinical Observations and Literature Review
Z. Artzi, C. Nemcovsky, H. Tal

2. Post Extraction Socket

Dynamics of Bio-Oss Collagen incorporation in fresh extraction wounds: an experimental study in the dog.
Araujo, M. G., Liljenberg, B., Lindhe, J.

Analysis of the socket bone wall dimensions in the upper maxilla in relation to immediate implant placement.
Huynh-Ba, G., Pjetursson, B. E., Sanz, M., Cecchinato, D., Ferrus, J., Lindhe, J., Lang, N. P.

Aesthetic and patient preference using a bone substitute to preserve extraction sockets under pontics. A cross sectional survey.
Schlee, M., Esposito M.

Extraction site management using a natural bone mineral containing collagen: rationale and retrospective case study.
Ackermann, K.L.

Comparative histomorphometric analysis of extraction sockets healing implanted with bovine xenografts, irradiated cancellous allografts, and solvent-dehydrated allografts in humans.

Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog
Araujo, M., E. Linder, et al.

Early implant placement with simultaneous guided bone regeneration following single-tooth extraction in the esthetic zone: 12-month results of a prospective study with 20 consecutive patients.
Buser, D., S. Halbritter, et al.

Hard tissue alterations after socket preservation: an experimental study in the beagle dog
Ficlk S, Zuur O, Wachtel H, Bolz W, Hürzeler MB.

Dimensional changes of the alveolar ridge contour after different socket preservation techniques
Ficlk S, Zuur O, Wachtel H, Stappert CFJ, Stein JM, Hürzeler MB.

Tissue alterations after tooth extraction with and without surgical trauma: a volumetric study in the beagle dog
Ficlk S, Zuur O, et al.

The influence of Bio-Oss Collagen on healing of an extraction socket: an experimental study in the dog
Araujo M, Linder E, et al. (2008)

A prospective clinical study of non-submerged immediate implants: clinical outcomes and esthetic results.

Effect of bone mineral with or without collagen membrane in ridge dehiscence defects following premolar extraction.
3. Ridge Augmentation
 a. Horizontal

 Ridge augmentation by applying bioresorbable membranes and deproteinized bovine bone mineral: a report of twelve consecutive cases.
 Hämmerle CH, Jung RE, Yaman D, Lang NP.

 Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: a clinical study with 42 patients.
 von Arx T, Buser D.

b. Vertical
Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical trial.
Felice, P., C. Marchetti, et al.

Vertical ridge augmentation using xenogenous bone blocks: a histomorphometric study in dogs
Rothamel, D., F. Schwarz, et al.

Vertical ridge augmentation around implants by e-PTFE titanium-reinforced membrane and bovine bone matrix: a 24- to 54-month study of 10 consecutive cases.
Canullo, L. and V. A. Malagnino

Vertical ridge augmentation with autogenous bone grafts: resorbable barriers supported by osteosynthesis plates versus titanium-reinforced barriers. A preliminary report of a blinded, randomized controlled clinical trial.
Merli M, Migani M, Esposito M.

Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss).
Simion M, Fontana F, Raspereini G, Maiorana C.

Canullo L, Trisi P, Simion M.

Vertical ridge augmentation using xenogenic material supported by a configured titanium mesh: clinicohistopathologic and histochemical study.
Artzi Z, Dayan D, Alpern Y, Nemcovsky CE.

Miscellaneous

Clinical and radiographic comparison of implants in regenerated or native bone: 5-year results.
Benic, G. I., R. E. Jung, et al.

Reduction of autogenous bone graft resorption by means of Bio-Oss coverage: a prospective study
Maiorana C, Beretta M, Salina S, Santoro F.

Alveolar Ridge Augmentation with Bio-Oss: A Histologic Study in Humans
N. Zitzmann, P. Schärer, C. Marinello, P. Schüpbach, T. Berglundh

Sinus Floor Augmentation

Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone.
A. Mordenfeld, M. Hallmann, CB Johansson, T. Albrektsson

Optimal microvessel density from composite graft of autogenous maxillary cortical bone and anorganic bovine bone in sinus augmentation: influences of clinical variables.

A clinical study of 406 sinus augmentations with 100% anorganic bovine bone.
Ferreira CE, Novaes AB, Haraszthy VI, Bittencourt M, Martinelli CB, Luczyszyn SM.

Retrospective radiographic investigation of the long-term stability of xenografts (Geistlich Bio-Oss) in the sinus.
Ruoff, H. and H. Terheyden

Prospective observation of 41 perforations of the Schneiderian membrane during sinus floor elevation

RFA Values of Implants Placed in Sinus Grafted and Nongrafted Sites after 6 and 12 Months
Degidi M, Daprile G, Piattelli A.
Clin Implant Dent Relat Res. Sep 9

A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation
Pietursson BE, Tan WC, Zwahlen M, Lang NP.

Impact of implant surface and grafting protocol on clinical outcomes of endosseous implants
Marchetti C, Pieri F, et al.

Repair of large sinus membrane perforations using stabilized collagen barrier membranes: surgical techniques with histologic and radiographic evidence of success.”
Testori T, Wallace SS, et al.

Sinus elevation with alloplasts or xenogenic materials and implants: an up-to-4-year clinical and radiologic follow-up.
Maiorana C, Sigurta D, Miranda A, Garlini G, Santoro F.

Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses.
Wallace SS, Froum SJ, Cho SC, Elian N, Monteiro D, Kim BS, Tarnow DP.

Systematic review of survival rates for implants placed in the grafted maxillary sinus
Del Fabbro M, Testori T, Francetti L, Weinstein R.

Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation
John HD, Wenz B.

Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review
Wallace SS, Froum SJ

Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results
Valentini P, Abensur DJ.

Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation
Tadjoedin ES, de Lange GL, Bronckers ALJJ, Lyaruu DM, Burger EH

A Clinical and Histologic Evaluation of Implant Integration in the Posterior Maxilla After Sinus Floor Augmentation with Autogenous Bone, Bovine Hydroxyapatite, or a 20:80 Mixture
Hallmann M, Sennerby L, Lundgren S

A Prospective 1-Year Clinical and Radiographic Study of Implants Placed After maxillary Sinus Floor Augmentation With Bovine Hydroxyapatite and Autogenous Bone
Hallmann M., Hedin M., Sennerby L., Lundgren S.

Sinus Floor Elevation Using a Bovine Bone Mineral (Bio-Oss) With or Without the Concomitant Use of a Bilayered Collagen Barrier (Bio-Gide): A Clinical Report of Immediate and Delayed Implant Placement
G. Tawil, M. Mawla

C. Maiorana, M. Redemagni, M. Rabagliati, S. Salina

Sinus grafting with porous bone mineral (Bio-Oss®) for implant placement: A study on 15 patients
P. Valentini, D. Abensur, B. Wenz, M. Peetz, R. Schenk

Eighteen-Month Radiographic and Histologic Evaluation of Sinus Grafting with Anorganic Bovine Bone in the Chimpanzee
B. McAllister, M. Margolin, A. Cogan, D. Buck, J. Hollinger, S.E. Lynch

Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests
Haas R., Mailath G., Dörtbudak O., Watzek G.

Residual Lateral Wall Defects Following Sinus Grafting With Recombinant Human Osteogenic Protein-1 or Bio-Oss® in the Chimpanzee
B. McAllister, M. Margolin, A. Cogan, M. Taylor, J. Wollins

Maxillary sinus augmentation using different grafting materials and dental implants in monkeys- Part I. Evaluation of anorganic bovine-derived bone matrix

Maxillary Sinus Floor Elevation for Implant Placement With Demineralized Freeze-Dried Bone and Bovine Bone (Bio-Oss®): A clinical study of 20 patients
P. Valentini, D. Abensur

Bone apposition onto oral implants in the sinus area filled with different grafting materials
5. GTR and GBR – Benefit of Membrane

a Intra-bony defects

Five-year results of a prospective, randomized, controlled study evaluating treatment of intrabony defects with a natural bone mineral and GTR.
Sculean A, Schwarz F, Chiantella GC, Donos N, Arweiler NB, Brecx M, Becker J.

Effects of combined treatment with porous bovine inorganic bone grafts and bilayer porcine collagen membrane on refractory one-wall intrabony defects.

Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide Perio)
Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I.

Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone.

Healing of intrabony defects following treatment with a bovine-derived xenograft and collagen membrane
Sculean A, Berakdar M, Chiantella GC, Donos N, Arweiler NB, Brecx M.

Effect of Porous Xenographic Bone Graft with Collagen Barrier Membrane on Periodontal Regeneration
Yamada S., Shima N., Kitamura H., Sugito H.

Periodontal Regeneration with an Autogenous Bone-Bio-Oss Composite Graft and a Bio-Gide Membrane
M. Camelo, M. Nevins, S. Lynch, R. Schenk, M. Simion, Myron Nevins

A controlled re-entry study on the effectiveness of bovine porous bone mineral used in combination with a collagen membrane of porcine origin in the treatment of intrabony defects in humans.
PM Camargo, V. Lekovic, M. Weinländer, M. Nedic, N. Vasilic, LE Wolinsky, EB Kenney

The Clinical Evaluation of Periodontal Surgery with Porous Bone Graft Material (Bio-Oss®) and Collagen Membrane (Bio-Gide®)
A. Ohazama, H. Kitamura, M. Suzuki, S. Yamada, K. Hasegawa

Reconstruction of anatomically complicated periodontal defects using a bioresorbable GTR barrier supported by bone mineral. A 6-month follow-up study of 6 cases
D. Lundgren, C. Slotte

Clinical, Radiographic, and Histologic Evaluation of Human Periodontal Defects Treated with Bio-Oss® and Bio-Gide®
<table>
<thead>
<tr>
<th>b Furcation</th>
</tr>
</thead>
</table>
| A clinical evaluation of anorganic bovine bone graft plus 10% collagen with or without a barrier in the treatment of class II furcation defects.
Reddy KP, Nayak DG, Uppoor AS
J Contemp Dent Pract. 2006; 7: 60-70 |

<table>
<thead>
<tr>
<th>c Peri-implant defects</th>
</tr>
</thead>
</table>
| Use of a new cross-linked collagen membrane for the treatment of dehiscence-type defects at titanium implants: a prospective, randomized-controlled double-blinded clinical multicenter study
Becker, J., B. Al-Nawas, et al.
| Two-year clinical results following treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane
Schwarz F, Sculean A, et al.
| Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series.
Schwarz F, Bieling K, Latz T, Nuesry E, Becker J.
J Clin Periodontol, 2006; 33(7): 491-499 |
| Long-term Results of Implants Treated with Guided Bone Regeneration: A 5-year Prospective Study
N. Zitzmann, P. Schärer, C. Marinello
Int J of Oral & Maxillofac Implants 2001; 16(3). |
| Single stage surgery combining transmucosal implant placement with guided bone regeneration and bioresorbable materials
Hämmerle CH, Lang NP
| The combined use of bioresorbable membranes and xenografts or autografts in the treatment of bone defects around implants - A study in beagle dogs
Hockers T, Abensur D, Valentini P, Legrand R, Hämmerle CHF
| The effect of a deproteinized bovine bone mineral (Bio-Oss®) on bone regeneration around titanium dental implants
Hämmerle CHF, Chiantella GC, Karring T., Lang NP
| Evaluation of a new bioresorbable barrier to facilitate guided bone regeneration around exposed implant threads . An experimental study in the monkey.
| Resorbable Versus Nonresorbable Membranes in Combination with Bio-Oss for Guided Bone Regeneration
N. Zitzmann, R. Naef, P. Schärer
| Bone Regeneration around Implants: a Clinical Study with a New Resorbable Membrane
Hürzeler M.B., Weng D., Hutmacher D. |
Deutsche Zahnärztliche Zeitschrift, 1996; 51(5).

Immediate or delayed immediate implantation versus late implantation when using the principles of guided bone regeneration
N. Zitzmann, R. Naef, P. Schüpbach, P. Schärer

The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review..
Rathe, F., Junker R, et al.

Efficacy of guided tissue regeneration in the management of through-and-through lesions following surgical endodontics: a preliminary study
Taschieri S, Del Fabbro M, Testori T, Saita M, Weinstein R.

Treatment of Angular Bone Defects with a Composite Bone Grafting Material in Combination with a Collagen Membrane
Zitzmann N, Rateitschak-Plüss E, Marinello C.

6. Peri-Implantitis

Surgical regenerative treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: a four-year clinical follow-up report.
Schwarz, F., N. Sahm, et al.

The efficacy of interventions to treat peri-implantitis: a Cochrane systematic review of randomised controlled clinical trials
Esposito M, Grusovin MG, Coulthard P, Worthington HV.

Two-year clinical results following treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane
Schwarz F, Sculean A, et al.

Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series.
Schwarz F, Bieling K, Latz T, Nuesry E, Becker J.

7. Periodontitis

Prevention of mandibular third molar extraction-associated periodontal defects: a comparative study

Long-term Clinical Outcome after Reconstruction of Periodontal Defects using a Bovine-Derived Xenograft: a Retrospective Cohort Study
Tietmann C, Brösel F.
Perio 2006; 3: 79–86.

Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects: a comparative controlled clinical trial
Zucchelli G, Amore C, Montebugnoli L, De Sanctis M.
Treatment of Angular Bone Defects with a Composite Bone Grafting Material in Combination with a Collagen Membrane
Zitzmann N, Rateitschak-Plüss E, Marinello C.

Clinical and histologic evaluation of human intrabony defects treated with an enamel matrix protein derivative combined with a bovine-derived xenograft.
Sculean A, Windisch P, Keglevich T, Chiantella GC, Gera I, Donos N.

Nevins ML, Camelo M, Lynch SE, Schenk RK, Nevins M

Clinical Comparison of an Enamel Matrix Derivative Used Alone or in Combination With a Bovine-Derived Xenograft for the Treatment of Periodontal Osseous Defects in Humans
Velasquez-Plata D, Scheyer E, Mellonig JT

A clinical comparison of a bovine-derived xenograft used alone and in combination with enamel matrix derivative for the treatment of periodontal osseous defects in humans.
Scheyer ET, Velasquez-Plata D, Brunsvoeld MA, Lasho DJ, Mellonig JT.

Clinical Evaluation of an Enamel Matrix Protein Derivative (Emdogain) Combined with a Bovine-Derived Xenograft (Bio-Oss) for the Treatment of Intrabony Periodontal Defects in Humans
Sculean A., Chiantella G., Windisch P., Gera I., Reich E.

Periodontal Regeneration with an Autogenous Bone-Bio-Oss Composite Graft and a Bio-Gide Membrane
M. Camelo, M. Nevins, S. Lynch, R. Schenk, M. Simion, Myron Nevins

A Comparison Between Enamel Matrix Proteins Used Alone or in Combination With bovine Porous Bone Mineral in the Treatment of Intrabony Periodontal Defects in Humans
V. Lekovic, P. Camargo, M. Weinländer, M. Nedic,, Z. Aleksic, EB Kenney

Human Histologic Evaluation of a Bovine-Derived Bone Xenograft in the Treatment of Periodontal Osseous Defects
J.T. Mellonig

The Clinical Evaluation of Periodontal Surgery with Porous Bone Graft Material (Bio-Oss®) and Collagen Membrane (Bio-Gide®)
A. Ohazama, H. Kitamura, M. Suzuki, S. Yamada, K. Hasegawa

Clinical evaluation of Bio-Oss®: a bovine-derived xenograft for the treatment of periodontal osseous defects in humans
CR Richardson, JT Mellonig, MA Brunsvold, HAT McDonnell, DL Cochran

8. Soft-tissue regeneration

Use of a Porcine Collagen Matrix as an Alternative to Autogenous Tissue for Grafting Oral Soft Tissue Defects.
A.S. Herford, L. Akin, M. Cicciu, C. Maiorana, PJ Boyne
Xenogeneic Collagen Matrix with Coronally Advanced Flap compared to Connective Tissue with Coronally Advanced Flap for the Treatment of Dehiscence-Type Recession Defects.
McGuire MK, Scheyer ET.

Clinical evaluation of a new collagen matrix (Mucograft prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: a randomized prospective clinical trial.
Sanz, M., R. Lorenzo, et al.

Treatment of gingival recession with coronally advanced flap procedures: a systematic review
Cairo, F., U. Pagliaro, et al.

9. Geistlich Bio-Oss® Characteristics

Human osteoclast formation and activity on a xenogenous bone mineral.
Perrotti, V., B. M. Nicholls, et al.

Histologic and elemental microanalytical study of anorganic bovine bone substitution following sinus floor augmentation in humans
Traini T, Degidi M, Sammons R, Stanley P, Piattelli A.

A histological and histomorphometric evaluation of inorganic bovine bone retrieved 9 years after a sinus augmentation procedure.
Traini T, Valentini P, Iezzi G, Piattelli A.

Acceleration of de novo bone formation following application of autogenous bone to particulated anorganic bovine material in vivo.
Thorwarth M, Schlegel KA, Wehrhan F, Srour S, Schultze-Mosgau S.

Microvessel density and vascular endothelial growth factor expression in sinus augmentation using Bio-Oss.
Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A.

Genetic effects of anorganic bovine bone (Bio-Oss) on osteoblast-like MG63 cells.

Maxillary Sinus Augmentation with Bio-Oss particles: A Light, Scanning, and Transmission Electron Microscopy Study in Man
Orsini G, Traini T, Scarano A, Degidi M, Perrotti V, Piccirilli M, Piattelli A.

Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation
John HD, Wenz B

The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatite used as bone graft substitute materials
Benezra Rosen V., Hobbs L.W., Spector M.

Orthodontic movement in bone defects augmented with Bio-Oss®
- An experimental study in dogs
MG Araujo, D. Carmagnola, T. Berglundh, B. Lindhe

Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral

Analysis of the size of the specific surface area of bone regeneration materials by gas adsorption
G. Weibrich, R. Trettin, S.H. Gnoth, H. Götz, H. Duschner, W. Wagner
Mund Kiefer Gesichts Chir 2000; 156.

M. Piatelli, GA Favero, A. Scarano, G. Orsini, A. Piatelli

Tissue Reaction and Material Characteristics of four Bone Substitutes
Jensen S.S., Merete A., Pinholt E.M., Hjørting-Hansen E., Melsen F., Ruyter E.

10. Geistlich Bio-Gide® Characteristics

Effect of two bioabsorbable barrier membranes on bone regeneration of standardized defects in calvarial bone: a comparative histomorphometric study in pigs.

Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs.
Schwarz, F., D. Rothamel, et al.

Cross-linked and non-cross-linked collagen barrier membranes disintegrate following surgical exposure to the oral environment: a histological study in the cat
Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O.

Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat.
Schwarz, F., D. Rothamel, et al.

Membrane durability and tissue response of different bioresorbable barrier membranes: a histologic study in the rabbit calvarium
Von Arx T, Broggini N, Storgard S, Bornstein M, Schenk R, Buser D

Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat
Rothamel D, Schwarz F, Sager M, herten M, Sculean A, Becker J.

Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-
like cells
Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J.

Compatibility of resorbable and nonresorbable guided tissue regeneration membranes in cultures of primary human periodontal ligament fibroblasts and human osteoblast-like cells
B. Alpar, G. Leyhausen, H. Günay, W. Geurtsen

11. Safety

Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone
B. Wenz, B. Oesch, M. Horst
Biomaterials 2001; 22.

12. Comparisons with other...

a ... bone substitute materials

Surgical regenerative treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: a four-year clinical follow-up report.
Schwarz, F., N. Sahm, et al.

Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects.
A long-term histomorphometric study in minipigs
Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D.

Histologic and histomorphometric evaluation of two bone substitute materials for bone regeneration: an experimental study in sheep.
Paknejad, M., S. Emtiaz, et al.

The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material
Artzi Z, Kozlovsky A, Nemcovsky CE, Weinreb M.

Comparison of Porous Bone Mineral and Biologically Active Glass in Critical-Sized Defects

b ... membranes

Vivosorb(R) as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography

Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT
Gielkens PF, Schortinghuis J, et al.

Long-term bio-degradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration
Ossification of a novel crosslinked porcine collagen barrier in guided bone regeneration in dogs.
Zubery Y, Goldlust A, Alves A, Nir E.

13. Growth factors and carriers

Prefabrication of vascularized bone grafts using recombinant human osteogenic protein-1--part 3: dosage of rhOP-1, the use of external and internal scaffolds.

Platelet-Derived Growth Factor Enhancement of a Mineral-Collagen Bone Substitute
E.B. Stephan, R. Renjen, S.E. Lynch, R. Dziak

Recombinant human osteogenic protein 1 in the rat mandibular augmentation model: differences in morphology of the newly formed bone are dependent on the type of carrier

14. PRP and stem cells

In vivo Comparison of Hard Tissue Regeneration with Human Mesenchymal Stem Cells processed either the FICOLL- or the BMAC-Method.
Sauerbier S, Stricker A, Kuschnierz J, Buehler F, Oshima T, Xavier SP, Schmelzeisen R, Gutwald R.

Effect of platelet-rich plasma on the healing of intra-bony defects treated with a natural bone mineral and a collagen membrane.
Döri F, Huzar T, Nikolidakis D, Arweiler N.B., Gera I, Sculean A.

The effect of platelet-rich plasma on bone healing around implants placed in bone defects treated with Bio-Oss: a pilot study in the dog tibia.
You TM, Choi BH, Li J, et al.

15. Cranio Maxillofacial

Resorbable collagen membrane in surgical repair of fistula following palatoplasty in nonsyndromic cleft palate.
Sader R, Seitz O, Kuttenberger J.